Search results for " Nanoparticle"
showing 10 items of 936 documents
Design and experimental validation of a magnetic device for stem cell culture.
2020
Cell culture of bone and tendon tissues requires mechanical stimulation of the cells in order to mimic their physiological state. In the present work, a device has been conceived and developed to generate a controlled magnetic field with a homogeneous gradient in the working space. The design requirement was to maximize the magnetic flux gradient, assuring a minimum magnetizing value in a 15 mm × 15 mm working area, which highly increases the normal operating range of this sort of devices. The objective is to use the machine for two types of biological tests: magnetic irradiation of biological samples and force generation on paramagnetic particles embedded in scaffolds for cell culture. The…
Field effect in the viscosity of magnetic colloids studied by multi-particle collision dynamics
2019
Abstract Colloidal solutions of magnetic nanoparticles are usually employed when the fluidity and magnetic properties are required at the same time, either in technical or biomedical applications. However, when the magnetic size of the nanoparticles is large enough (>12–15 nm) the colloid may form an equilibrium structure with or without the external magnetic field, which can significantly influence its rheology. Using multi-particle collision dynamics we study the internal structure and viscosity of the magnetic colloids at varying magnitudes of the externally applied field. We show a generalized structural behavior across all studied regimes and an appreciable increase of flow resistance …
Zn-substituted iron oxide nanoparticles from thermal decomposition and their thermally treated derivatives for magnetic solid-phase extraction
2020
Abstract Controlled thermal decomposition of zinc and iron acetylacetonates in the presence of oleic acid and oleylamine provided surfactant-capped magnetic nanoparticles with narrow size distribution and the mean diameter of ≈15 nm. The combined study by XRD, XRF and Mossbauer spectroscopy revealed three important features of the as-prepared nanoparticles. First, the actual ratio of Zn:Fe was considerably lower in the product compared to the initial ratio of metal precursors (0.14 vs. 0.50). Second, a pure stoichiometric Zn-doped magnetite system, specifically of the composition Zn0.37Fe2.63O4, with no signatures of oxidation to maghemite was formed. Third, Zn2+ ions were distributed at bo…
Magnetic field control of gas-liquid mass transfer in ferrofluids
2020
Abstract Gas-liquid mass transfer plays a key role in a broad range of industrial processes. The magnetic field control over the morphology of the gas-liquid interface and solute transport is an attractive feature if it can be realized efficiently. However, the magnetic properties of typical liquids and gases are rather weak. The experimental investigation is carried out to evaluate the effect of the magnetic field, which is mediated by magnetic nanoparticles, on the gas-liquid mass exchange during the sparging run through a hydrocarbon ferrofluid. The results indicate that the gradient field is especially effective at controlling the gas-liquid contact volume: the foaming of the liquid dur…
Lipid Nanoparticles as Potential Gene Therapeutic Delivery Systems for Oral Administration.
2017
Background Gene therapy has experimented an increasing attention in the last decades, due to its enormous potential applications in the medical field. It can be defined as the use of genes or genetic material (DNA, RNA, oligonucleotides) to treat or prevent a disease state, generally a geneticbased one. Application Other applications, like treating viral, bacterial or parasite infections or development of vaccines are gaining also interest. Efficient gene therapy is mainly dependent on the ability of the highly labile genetic material to reach the therapeutic target. For this purpose, different delivery systems have been designed and extensively investigated. Nanoparticles offer a broad ran…
Effect of TiO2 nanoparticles in thyme under reduced irrigation conditions
2018
The nanotechnology is a relatively new technology that has recently entered the field of agriculture. Nanotechnology covers the integration or manipulation of individual atoms, molecules or molecular masses to a diverse array of structures allowing the production of new characteristics and traits of interest. The aim of this study was to evaluate the effects of foliar application of TiO2 nanoparticles on quantitative traits (plant height, number of branches, dry weight of shoots and roots) and the essential oil content of thyme under different levels of field capacity. Our results showed that the application of TiO2 nanoparticles had significant effects on thyme growth, while the essential …
Zeolite-silver-zinc nanoparticles : biocompatibility and their effect on the compressive strength of mineral trioxide aggregate
2016
Background This study was carried out to evaluate the biocompatibility of zeolite-silver-zinc (Ze-Ag-Zn) nanoparticles and their effect on the compressive strength of Mineral Trioxide Aggregate (MTA). Material and Methods Biocompatibility was evaluated by an MTT assay on the pulmonary adenocarcinoma cells with 0.05, 0.1, 0.25, 0.5, 1 and 5 mg/mL concentrations of Ze-Ag-Zn. For compressive strength test, four groups containing 15 stainless-steel cylinders with an internal diameter of 4 and a height of 6 mm were prepared and MTA (groups 1 and 2) or MTA + 2% Ze-Ag-Zn (groups 3 and 4) were placed in the cylinders. The compressive strength was evaluated using a universal testing machine 4 days a…
Silver Nanoparticles Affect Functional Bioenergetic Traits in the Invasive Red Sea Mussel Brachidontes pharaonis
2016
We investigated the functional trait responses to 5 nm metallic silver nanoparticle (AgNPs) exposure in the Lessepsian-entry bivalveB. pharaonis. Respiration rate (oxygen consumption), heartbeat rate, and absorption efficiency were evaluated across an 8-day exposure period in mesocosmal conditions. Basal reference values from not-exposed specimens were statistically compared with those obtained from animals treated with three sublethal nanoparticle concentrations (2 μg L−1, 20 μg L−1, and 40 μg L−1). Our data showed statistically significant effects on the average respiration rate ofB. pharaonis. Moreover, complex nonlinear dynamics were observed as a function of the concentration level and…
Plasmonic nanosensors reveal a height dependence of MinDE protein oscillations on membrane features
2018
6 p.-4 fig.
Antiviral properties of silver nanoparticles against norovirus surrogates and their efficacy in coated polyhydroxyalkanoates systems
2017
Silver nanoparticles (AgNP) have strong broad-spectrum antimicrobial activity and gained increased attention for the development of AgNP based products, including medical and food applications. Initially, the efficacy of AgNP and silver nitrate (AgNO3) was evaluated for inactivating norovirus surrogates, the feline calicivirus (FCV) and the murine norovirus (MNV). These norovirus surrogates were exposed to AgNO3 and AgNP solutions for 24 h at 25 °C and then analyzed by cell-culture assays. Both AgNP and silver ions significantly decreased FCV and MNV infectivity in a dose-dependent manner between concentrations of 2.1 and 21 mg/L. Furthermore, poly (3-hydroxybutyrate-co-3-hydroxyvalerate) (…